Saltar al contenido
Merck

Effect of surface treatment on bond strength of Ti-10Ta-10Nb to low-fusing porcelain.

The Journal of prosthetic dentistry (2013-02-12)
Bo-Ah Lee, Ok-Su Kim, Mong-Sook Vang, Yeong-Joon Park
RESUMEN

Ti-10Ta-10Nb alloy is a promising alloy for metal ceramic crowns because of its good corrosion resistance and low cytotoxicity. However, more information is needed on the bond strength between this alloy and porcelain. The purpose of this study was to compare the surface morphology, surface roughness, and bond strength of a Ti-10Ta-10Nb alloy, pure Ti, and a Ti-6Al-4V alloy. Ti-10Ta-10Nb, pure Ti, and Ti-6Al-4V specimens (25 × 3 × 0.55 mm plate) were prepared and then divided into 6 groups (n=8) according to surface treatment. Group P (control group) was polished with SiC paper. Groups S50 and S250 were airborne-particle abraded with 50 μm and 250 μm aluminum oxide powder. Group HCl was immersed in 10% HCl aqueous solution, and Group HF was immersed in 17% HNO(3)/HF solution. Group TiN was coated with TiN. Atomic force microscopy was used to observe the surface roughness of the metal surface. Scanning electron microscopy was used to analyze the surface profile. A 3-point bending test was performed to evaluate the bond strength. Two-way analysis of variance (ANOVA) was performed to compare the roughness and bond strength and statistical differences were revealed by the Bonferroni post hoc test (α=.05). There were significant differences in the surface roughness, surface profile, and bond strength of the Ti alloys according to the surface treatments. The groups with the higher mean surface roughness showed higher bond strength, but surface profile had a larger effect on the bond strength than surface roughness. Moreover, the bond strength of the Ti-10Ta-10Nb alloy was high. Ti-10Ta-10Nb would be more suitable for a metal ceramic crown than pure Ti or Ti-6Al-4V, which have limited use because of their low bond strength to porcelain.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Ácido nítrico, ACS reagent, 70%
Sigma-Aldrich
Ácido clorhídrico, ACS reagent, 37%
Sigma-Aldrich
Cloruro de hidrógeno solution, 4.0 M in dioxane
Sigma-Aldrich
Hydrofluoric acid, ACS reagent, 48%
Sigma-Aldrich
Ácido nítrico, 70%, purified by redistillation, ≥99.999% trace metals basis
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido clorhídrico, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Ácido clorhídrico, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Ácido nítrico, puriss. p.a., 65.0-67.0%
Sigma-Aldrich
Cloruro de hidrógeno solution, 2.0 M in diethyl ether
Sigma-Aldrich
Hydrofluoric acid, 48 wt. % in H2O, ≥99.99% trace metals basis
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in diethyl ether
Sigma-Aldrich
Silicon carbide, −400 mesh particle size, ≥97.5%
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Niobium, powder, <45 μm, 99.8% trace metals basis
Sigma-Aldrich
Cloruro de hidrógeno solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Silicon carbide, -200 mesh particle size
Sigma-Aldrich
Ácido clorhídrico solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Titanium nitride, <3 μm
Sigma-Aldrich
Silicon carbide, nanopowder, <100 nm particle size
Sigma-Aldrich
Cloruro de hidrógeno solution, 1.0 M in acetic acid
Supelco
Ácido nítrico solution, 0.1 M HNO3 in water (0.1N), eluent concentrate for IC
Sigma-Aldrich
Tantalum, powder, −325 mesh, 99.9% trace metals basis
Sigma-Aldrich
Tantalum
Sigma-Aldrich
Tantalum, foil, thickness 0.025 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Ácido nítrico, ACS reagent, ≥90.0%
Sigma-Aldrich
Tantalum, foil, thickness 0.25 mm, ≥99.9% trace metals basis