Saltar al contenido
Merck
  • Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages.

Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association (2012-05-01)
Hyung Gyun Kim, Eun Hee Han, Woo-Seok Jang, Jae Ho Choi, Tilak Khanal, Bong Hwan Park, Thu Phuong Tran, Young Chul Chung, Hye Gwang Jeong
RESUMEN

Piperine is a major component of black (Piper nigrum Linn) and long (Piper longum Linn) peppers, and is widely used as a traditional food and medicine. It also exhibits a variety of biological activities, which include antioxidant, anti-tumor and anti-pyretic properties. In the present study, we investigated the inhibitory effects of piperine on phorbol 12-myristate 13-acetate (PMA)-induced cyclooxygenase-2 (COX-2) gene expression and analyzed the molecular mechanism of its activity in murine RAW 264.7 macrophages. Piperine dose-dependently decreased PMA-induced COX-2 expression and PGE(2) production, as well as COX-2 promoter-driven luciferase activity. Transient transfections utilizing COX-2 promoter deletion constructs and COX-2 promoter constructs, in which specific enhancer elements were mutagenized, revealed that the nuclear factor-κB (NF-κB), CCAAT/enhancer binding protein (C/EBP) and activator protein-1 (AP-1), were the predominant contributors to the effects of piperine. In addition, piperine inhibited PMA-induced NF-κB, C/EBP and c-Jun nuclear translocation. Furthermore, piperine significantly inhibited PMA-induced activation of the Akt and ERK. These findings demonstrate that piperine effectively attenuates COX-2 production, and provide further insight into the signal transduction pathways involved in the anti-inflammatory effects of piperine.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Piperine, ≥97%
Sigma-Aldrich
Piperine, ≥95%, FG