Saltar al contenido
Merck

Thermodynamic interactions in double-network hydrogels.

The journal of physical chemistry. B (2008-03-12)
Taiki Tominaga, Vijay R Tirumala, Sanghun Lee, Eric K Lin, Jian Ping Gong, Wen-Li Wu
RESUMEN

Double-network hydrogels (DN-gels) prepared from the combination of a moderately cross-linked anionic polyelectrolyte (PE) and an uncross-linked linear polymer solution (NP) exhibit mechanical properties such as fracture toughness that are intriguingly superior to that of their individual constituents. The scheme of double-network preparation, however, is not equally successful for all polyelectrolyte/neutral polymer pairs. A successful example is the combination of poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) cross-linked network and linear polyacrylamide (PAAm), which results in DN-gels with fracture strength under compression approaching that of articular cartilage ( approximately 20 MPa). Small-angle neutron scattering was used to determine the thermodynamic interaction parameters for PAMPS and PAAm in water as a first step to elucidate the molecular origin responsible for this superior property. Measurements on PAMPS/PAAm DN-gels and their solution blend counterparts indicate that the two polymers interact favorably with each other while in water. This favorable PAMPS/PAAm interaction given by the condition chi(PE-NP) < chi(PE-water) <chi(NP-water), where chi is the Flory-Huggins interaction parameter, is consistent with some of the salient features of the DN structure revealed by SANS, and it may also contribute to the ultimate mechanical properties of DN-gels.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) solution, average Mw 2,000,000, 15 wt. % in H2O