Saltar al contenido
Merck

Synthesis and characterization of model compounds of the lysine tyrosyl quinone cofactor of lysyl oxidase.

Journal of the American Chemical Society (2003-06-06)
Minae Mure, Sophie X Wang, Judith P Klinman
RESUMEN

4-n-Butylamino-5-ethyl-1,2-benzoquinone (1(ox)) has been synthesized as a model compound for the LTQ (lysine tyrosyl quinone) cofactor of lysyl oxidase (LOX). At pH 7, 1(ox) has a lambda(max) at 504 nm and exists as a neutral o-quinone in contrast to a TPQ (2,4,5-trihydroxyphenylalanine quinone) model compound, 4, which is a resonance-stabilized monoanion. Despite these structural differences 1(ox) and 4 have the same redox potential (ca. -180 mV vs SCE). The structure of the phenylhydrazine adduct of 1(ox) (2) is reported, and 2D NMR spectroscopy has been used to show that the position of nucleophilic addition is at C(1). UV-vis spectroscopic pH titration of phenylhydrazine adducts of 1(ox) and 4, 2, and 11, respectively, reveals a similar red shift in lambda(max) at alkaline pH with the same pK(a) (approximately 11.8). In contrast, the red shift in lambda(max) at acidic pH conditions yields different pK(a) values (2.12 for 2 vs -0.28 for 11), providing a means to distinguish LTQ from TPQ. Reactions between in situ generated 4-ethyl-1,2-benzoquinone and primary amines give a mixture of products, indicating that the protein environment must play an essential role in LTQ biogenesis by directing the nucleophilic addition of the epsilon-amino group of a lysine residue to the C(4) position of a putative dopaquinone intermediate. Characterization of a 1,6-adduct between an o-quinone and butylamine (3-n-butylamino-5-ethyl-1,2-benzoquinone, 13) confirms the assignment of LTQ as a 1,4-addition product.