Saltar al contenido
Merck

Small molecule activators of TAK1 promotes its activity-dependent ubiquitination and TRAIL-mediated tumor cell death.

Proceedings of the National Academy of Sciences of the United States of America (2023-09-21)
Weimin Sun, Guowei Wu, Xinyu Tian, Chunting Qi, Jingli Liu, Yilun Tong, Mengmeng Zhang, Jiayang Gao, Ze Cao, Yuchao Zhang, Zhijun Liu, Xiaoxu Tian, Ping Wu, Chao Peng, Jingwen Li, Li Tan, Bing Shan, Jianping Liu, Ying Li, Junying Yuan
RESUMEN

TAK1 is a key modulator of both NF-κB signaling and RIPK1. In TNF signaling pathway, activation of TAK1 directly mediates the phosphorylation of IKK complex and RIPK1. In a search for small molecule activators of RIPK1-mediated necroptosis, we found R406/R788, two small molecule analogs that could promote sustained activation of TAK1. Treatment with R406 sensitized cells to TNF-mediated necroptosis and RIPK1-dependent apoptosis by promoting sustained RIPK1 activation. Using click chemistry and multiple biochemical binding assays, we showed that treatment with R406 promotes the activation of TAK1 by directly binding to TAK1, independent of its original target Syk kinase. Treatment with R406 promoted the ubiquitination of TAK1 and the interaction of activated TAK1 with ubiquitinated RIPK1. Finally, we showed that R406/R788 could promote the cancer-killing activities of TRAIL in vitro and in mouse models. Our studies demonstrate the possibility of developing small molecule TAK1 activators to potentiate the effect of TRAIL as anticancer therapies.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
R406, ≥98% (HPLC)
Millipore
Gel ANTI-FLAG® M2 Affinity, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-α-tubulina monoclonal antibody produced in mouse, clone DM1A, ascites fluid