Saltar al contenido
Merck

Cell cycle controls long-range calcium signaling in the regenerating epidermis.

The Journal of cell biology (2023-04-27)
Jessica L Moore, Dhananjay Bhaskar, Feng Gao, Catherine Matte-Martone, Shuangshuang Du, Elizabeth Lathrop, Smirthy Ganesan, Lin Shao, Rachael Norris, Nil Campamà Sanz, Karl Annusver, Maria Kasper, Andy Cox, Caroline Hendry, Bastian Rieck, Smita Krishnaswamy, Valentina Greco
RESUMEN

Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Roche
Dispase® II (neutral protease, grade II), lyophilized, from bacterial, Roche, pkg of 5 × 1 g
Sigma-Aldrich
Anticuerpo anti-fosfo-histona H3 (Ser10), marcador de mitosis, Upstate®, from rabbit
Sigma-Aldrich
Anticuerpo anti-connexina 43, anticuerpo C-terminal, clon P4G9, clone P4G9, from mouse