Saltar al contenido
Merck
  • Dimethylarginine dimethylaminohydrolase 1 as a novel regulator of oligodendrocyte differentiation in the central nervous system remyelination.

Dimethylarginine dimethylaminohydrolase 1 as a novel regulator of oligodendrocyte differentiation in the central nervous system remyelination.

Glia (2021-07-17)
Akiko Uyeda, Lili Quan, Yuki Kato, Nagaaki Muramatsu, Shogo Tanabe, Kazuhisa Sakai, Noritaka Ichinohe, Yukio Kawahara, Tatsunori Suzuki, Rieko Muramatsu
RESUMEN

Remyelination is a regenerative process that restores the lost neurological function and partially depends on oligodendrocyte differentiation. Differentiation of oligodendrocytes spontaneously occurs after demyelination, depending on the cell intrinsic mechanisms. By combining a loss-of-function genomic screen with a web-resource-based candidate gene identification approach, we identified that dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a novel regulator of oligodendrocyte differentiation. Silencing DDAH1 in oligodendrocytes prevented the expression of myelin basic protein in mouse oligodendrocyte culture with the change in expression of genes annotated with oligodendrocyte development. DDAH1 inhibition attenuated spontaneous remyelination in a cuprizone-induced demyelinated mouse model. Conversely, increased DDAH1 expression enhanced remyelination capacity in experimental autoimmune encephalomyelitis. These results provide a novel therapeutic option for demyelinating diseases by modulating DDAH1 activity.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Suero fetal bovino, non-USA origin, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Anticuerpo anti-Olig2, clon 211F1.1, clone 211F1.1, from mouse
Sigma-Aldrich
Anti-Aspa/Nur7 Antibody, from rabbit, purified by affinity chromatography