Saltar al contenido
Merck

Histone demethylase PHF2 activates CREB and promotes memory consolidation.

EMBO reports (2019-07-31)
Hye-Jin Kim, Sung Won Hur, Jun Bum Park, Jieun Seo, Jae Jin Shin, Seon-Young Kim, Myoung-Hwan Kim, Do Hyun Han, Jong-Wan Park, Joo Min Park, Sang Jeong Kim, Yang-Sook Chun
RESUMEN

Long-term memory formation is attributed to experience-dependent gene expression. Dynamic changes in histone methylation are essential for the epigenetic regulation of memory consolidation-related genes. Here, we demonstrate that the plant homeodomain finger protein 2 (PHF2) histone demethylase is upregulated in the mouse hippocampus during the experience phase and plays an essential role in memory formation. PHF2 promotes the expression of memory-related genes by epigenetically reinforcing the TrkB-CREB signaling pathway. In behavioral tests, memory formation is enhanced by transgenic overexpression of PHF2 in mice, but is impaired by silencing PHF2 in the hippocampus. Electrophysiological studies reveal that PHF2 elevates field excitatory postsynaptic potential (fEPSP) and NMDA receptor-mediated evoked excitatory postsynaptic current (EPSC) in CA1 pyramidal neurons, suggesting that PHF2 promotes long-term potentiation. This study provides insight into the epigenetic regulation of learning and memory formation, which advances our knowledge to improve memory in patients with degenerative brain diseases.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
N-Methyl-D-aspartic acid, ≥98% (TLC), solid
Sigma-Aldrich
MISSION® esiRNA, targeting human PHF1