Saltar al contenido
Merck

Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells.

Cell death & disease (2019-08-14)
Likun Gao, Zhi Wang, Danhua Lu, Jinling Huang, Jin Liu, Li Hong
RESUMEN

Paeonol (Pae), a phenolic acid compound isolated from the Moutan Cortex, was previously demonstrated to exert multiple anticancer effects. The rational control of autophagy has been considered a potential treatment strategy for epithelial ovarian cancer. However, whether Pae induces autophagy and the relationship between its antitumour activities and autophagy in epithelial ovarian cancer are still unclear. In this study, we found that Pae induced not only antiproliferation activity and apoptosis but also autophagy, and complete autophagic flux was observed in A2780 and SKOV3 cells. In addition, combination treatment with Pae and an autophagy inhibitor (3-methyladenine and hydroxychloroquine) showed significant synergetic effects on inhibiting cell viability and promoting apoptosis in vitro and in the A2780 xenograft model, without severe side effects, which was often had by cisplatin. These results indicate that autophagy induced by Pae has a cytoprotective role in both A2780 and SKOV3 cells. Mechanistically, we found that Pae inhibited the protein kinase B(Akt)/mammalian target of rapamycin (mTOR) pathway. Furthermore, when combined with the inhibitors MK2206 and rapamycin to inhibit Akt and mTOR kinase activity, Pae-induced autophagy was increased. Taken together, our results demonstrate that Pae induced cytoprotective autophagy by inhibiting the Akt/mTOR pathway in ovarian cancer cells. Thus, the strategy of combining Pae with an autophagy inhibitor to block Akt/mTOR-dependent autophagy could enhance the antitumour activity of Pae and warrants further application for the treatment of ovarian cancer.