Skip to Content
Merck

Continuous API-crystal coating via coacervation in a tubular reactor.

International journal of pharmaceutics (2014-08-12)
M O Besenhard, A Thurnberger, R Hohl, E Faulhammer, J Rattenberger, J G Khinast
ABSTRACT

We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Hydrogen chloride solution, 3 M in cyclopentyl methyl ether (CPME)
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ibuprofen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Ibuprofen for peak identification, European Pharmacopoeia (EP) Reference Standard
Ibuprofen, European Pharmacopoeia (EP) Reference Standard
Supelco
Ibuprofen
Sigma-Aldrich
Sodium sulfate, tested according to Ph. Eur., anhydrous
Supelco
Acetic acid, analytical standard
Supelco
Hydrogen chloride – 2-propanol solution, ~1.25 M HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
Sodium sulfate, BioUltra, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Sodium sulfate, ≥99.99% trace metals basis
Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Supelco
Hydrogen chloride – ethanol solution, ~1.25 M HCl, for GC derivatization, LiChropur
Supelco
Hydrogen chloride – methanol solution, ~1.25 m HCl (T), for GC derivatization, LiChropur
Sigma-Aldrich
di-Sodium hydrogen phosphate dihydrate, BioXtra, ≥98.0% (T)
Sigma-Aldrich
di-Sodium hydrogen phosphate dihydrate, tested according to Ph. Eur.
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Hydrochloric acid, 36.5-38.0%, BioReagent, for molecular biology
Sigma-Aldrich
Sodium sulfate, BioXtra, ≥99.0%
Sigma-Aldrich
Sodium sulfate, ≥99.0%, suitable for plant cell culture
Sigma-Aldrich
Ibuprofen, meets USP testing specifications
Sigma-Aldrich
Ibuprofen, ≥98% (GC)
USP
Ibuprofen, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrochloric acid solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Sodium sulfate, ACS reagent, ≥99.0%, anhydrous, powder