Skip to Content
Merck
  • Overloading study of basic compounds with a positively charged C18 column in liquid chromatography.

Overloading study of basic compounds with a positively charged C18 column in liquid chromatography.

Journal of chromatography. A (2013-02-16)
Chaoran Wang, Zhimou Guo, Zhen Long, Xiuli Zhang, Xinmiao Liang
ABSTRACT

While tailing and overloading of basic compounds remain problematic on most RP columns, a new kind of positively charged RP column named XCharge C18 was found to be superior good for the separation of alkaloids in our practical use. In this work, the surface charge property of the XCharge C18 column was evaluated by the retention of NO(3)(-) under different pH values and buffer concentrations. A considerable and pH-dependent positive charge was confirmed on the column. Then overloading behaviors of bases were systematically studied using amitriptyline as a basic probe. Good peak shapes (Tf<1.5) and extra high loadability with a C(0.5) of about 30,000 mg/L were observed on the column, with commonly used 0.1% formic acid as mobile phase additive. However, increasing the ionic strength of buffer with phosphates led to tailing peaks at high sample amount and sharp decline in loadability (C(0.5) of 2000-3000 mg/L), although it brought higher column efficiency at low sample amount. Higher pH also induced worse performance and lower loadability. The overall results demonstrated the importance of an appropriate level of ionic repulsion for the XCharge C18 column to achieve the good performance for bases, which could be explained by the multiple-site adsorption theory as ionic repulsion would shield the solute from occupying high-energy sites deeper in C18 layer.

MATERIALS
Product Number
Brand
Product Description

Supelco
Phosphate Standard for IC, TraceCERT®, 1000 mg/L phosphate in water (nominal concentration)
Sigma-Aldrich
Sodium phosphate tribasic dodecahydrate, ≥98%
Sigma-Aldrich
Sodium phosphate tribasic dodecahydrate, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
Amitriptyline hydrochloride, ≥98% (TLC), powder
Sigma-Aldrich
Sodium phosphate dibasic solution, BioUltra, 0.5 M in H2O
Sigma-Aldrich
Sodium phosphate tribasic dodecahydrate, ACS reagent, ≥98%
Supelco
Amitriptyline hydrochloride solution, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Sodium phosphate dibasic, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, puriss. p.a., ACS reagent, anhydrous, ≥99.0% (T)
Sigma-Aldrich
Sodium phosphate dibasic dodecahydrate, meets analytical specification of Ph. Eur., BP, E339, 98.5-102.5% (T)
Sigma-Aldrich
Sodium phosphate dibasic, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E 339, anhydrous, 98-100.5% (calc. to the dried substance)
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%, free-flowing, Redi-Dri
Sigma-Aldrich
Sodium phosphate monobasic solution, BioUltra, 5 M in H2O
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Sodium phosphate dibasic, purum p.a., anhydrous, ≥98.0% (T)
Sigma-Aldrich
Sodium phosphate dibasic dodecahydrate, BioXtra, ≥99.0% (T)
Sigma-Aldrich
Sodium phosphate monobasic, purum p.a., anhydrous, ≥99.0% (T)
Sigma-Aldrich
Sodium phosphate dibasic, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Sodium phosphate, 96%
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Sodium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Sodium phosphate dibasic dodecahydrate, tested according to Ph. Eur.
Sigma-Aldrich
Sodium phosphate monobasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate dibasic, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sodium phosphate monobasic, BioReagent, for molecular biology, anhydrous, ≥98%
Sigma-Aldrich
Sodium phosphate dibasic, BioXtra, ≥99.0%