- Use of liquid chromatography/electrospray ionization tandem mass spectrometry to study the degradation pathways of terbuthylazine (TER) by Typha latifolia in constructed wetlands: identification of a new TER metabolite.
Use of liquid chromatography/electrospray ionization tandem mass spectrometry to study the degradation pathways of terbuthylazine (TER) by Typha latifolia in constructed wetlands: identification of a new TER metabolite.
S-Triazines are used worldwide as herbicides for agricultural and non-agricultural purposes. Although terbuthylazine (TER) is the second most frequently used S-triazine, there is limited information on its metabolism. For this reason, an analytical method based on liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) has been developed aiming at the identification of TER and its five major metabolites (desisopropyl-hydroxy-atrazine, desethyl-hydroxy-terbuthylazine, desisopropyl-atrazine, hydroxy-terbuthylazine and desethyl-terbuthylazine) in constructed wetland water samples. The separation of TER and its major metabolites was performed by reversed-phase high-performance liquid chromatography (HPLC) on a C(8) column using a gradient elution of aqueous acetic acid 1% (solvent A) and acetonitrile (solvent B), followed by MS/MS analysis on a triple quadrupole mass spectrometer. The data-depended analysis (DDA) scan approach has been employed and the main degradation pathways of both hydroxyl and chloro (dealkylated and alkylated) metabolites are elucidated through the tandem mass spectral (MS/MS) interpretation of triazine fragments under CID conditions. In addition, another major metabolite of TER, namely N2-tert-butyl-N4-ethyl-6-methoxy-1,3,5-triazine-2,4-diamine, has been identified. This methodology can be further employed in biodegradation studies of TER, thus assisting the assessment of its environmental impact.