Skip to Content
Merck
  • In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst.

In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst.

Journal of environmental sciences (China) (2009-10-30)
Shaoyong Huang, Changbin Zhang, Hong He
ABSTRACT

An activated carbon (AC) supported Pd catalyst was used to develop a highly efficient in situ adsorption-catalysis system for the removal of low concentrations of o-xylene. In this study, three kinds of Pd/AC catalysts were prepared and tested to investigate the synergistic efficiency between adsorption and catalysis for o-xylene removal. The Pd/AC catalyst was first used as an adsorbent to concentrate dilute o-xylene at low temperature. After saturated adsorption, the adsorbed o-xylene was oxidized to CO2 and H2O by raising the temperature of the catalyst bed. The results showed that more than 99% of the adsorbed o-xylene was completely oxidized to CO2 over a 5% Pd/AC catalyst at 140 degrees C. Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), temperature-programmed desorption (TPD), and temperature-programmed oxidation (TPO) were applied to investigate the physical properties of o-xylene adsorption-desorption and the in situ adsorption-catalysis activity of the AC support and Pd/AC catalyst. A synergistic relationship between the AC support and the active Pd species for the removal of low concentrations of o-xylene was established.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Xylenes, reagent grade
Supelco
o-Xylene, analytical standard
Sigma-Aldrich
o-Xylene, reagent grade, ≥98.0%
Supelco
o-Xylene, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Xylenes, ACS reagent, ≥98.5% xylenes + ethylbenzene basis
Sigma-Aldrich
Xylenes, histological grade