Skip to Content
Merck
  • A high-throughput assay for measurement of multidrug resistance protein-mediated transport of leukotriene C4 into membrane vesicles.

A high-throughput assay for measurement of multidrug resistance protein-mediated transport of leukotriene C4 into membrane vesicles.

Analytical biochemistry (2002-11-05)
Linda B Tabas, Anne H Dantzig
ABSTRACT

This study investigated a high-throughput assay to measure multidrug resistance-associated protein (MRP1)-mediated uptake into membrane vesicles. Typically, a rapid filtration technique using a 12-filter vacuum manifold is used. We report here the development of a 96-well microtiter dish assay. MRP1-transfected HeLa cells (HeLa-T5) were used for the membrane vesicle preparations. The uptake of 50nM [3H]leukotriene C(4) (LTC(4)) was measured in a 96-well microtiter dish with rapid filtration onto a Perkin Elmer unifilter GF/B plate using a Perkin Elmer Filtermate 196. Counting of the isotype was conducted with a Perkin Elmer Top Count NXT. Uptake was adenosine 5'-triphosphate-dependent and linear over a 120-s time course. Uptake was inhibited by the leukotriene D(4) antagonist, MK 571, with a k(i) of 0.67 microM, and by the anti-MRP1 monoclonal antibody QCRL-3 but not by QCRL-1. Inhibition by estradiol-17-beta-glucuronide was 35-fold greater than inhibition by estradiol-3-beta-glucuronide. The kinetic parameters for LTC(4) uptake were determined to be a K(m) of 157nM with a V(max) of 344pmol/min/mg protein. The properties of MRP1-mediated transport of LTC(4) are consistent with those previously reported. The microtiter dish assay is a more expedient method for measuring transport into membrane vesicles and will have applications to other transporters.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Estradiol 3-(β-D-glucuronide) sodium salt