- The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis.
The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis.
The nuclear factor E2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling cascades is a key transcriptional pathway governing cellular oxidative stress and tumor development. Mammalian hepatitis B X-interacting protein (HBXIP) has critical roles in modulating cancer malignance and tumor progression. However, whether HBXIP interacts with KEAP1 and NRF2 is unclear. Here, we found that HBXIP can effectually compete with NRF2 for binding with KEAP1 protein via its highly conserved GLNLG motif. The HBXIP-mediated reduction in NRF2-KEAP1 complexes promotes NRF2 accumulation and nuclear entry, which facilities the activation of antioxidant response element (ARE)-dependent signaling cascades, thereby reducing the accumulation of endogenous cellular reactive oxygen species (ROS). We also found a strong positive correlation between HBXIP expression and NRF2 expression in breast cancer cells, tissue microarrays and clinical breast cancer tissues. Furthermore, this positive correlation was further confirmed via analysis of 1905 clinical cases of breast carcinoma provided by the cancer genomics database cBioPortal. Strikingly, disrupting the HBXIP-KEAP1 axis via mutating the GLNLG motif of HBXIP leads to potent inhibition of the malignancy of breast carcinoma both in vivo and in vitro. Our findings broaden our understanding of HBXIP as a modulation factor of cellular oxidative stress and address a novel regulatory mechanism governing redox homeostasis and the progression of breast carcinoma.