Skip to Content
Merck
  • Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels.

Carbon monoxide released by CORM-401 uncouples mitochondrial respiration and inhibits glycolysis in endothelial cells: A role for mitoBKCa channels.

Biochimica et biophysica acta (2015-07-18)
Patrycja Kaczara, Roberto Motterlini, Gerald M Rosen, Bartlomiej Augustynek, Piotr Bednarczyk, Adam Szewczyk, Roberta Foresti, Stefan Chlopicki
ABSTRACT

Carbon monoxide (CO), a product of heme degradation by heme oxygenases, plays an important role in vascular homeostasis. Recent evidence indicates that mitochondria are among a number of molecular targets that mediate the cellular actions of CO. In the present study we characterized the effects of CO released from CORM-401 on mitochondrial respiration and glycolysis in intact human endothelial cells using electron paramagnetic resonance (EPR) oximetry and the Seahorse XF technology. We found that CORM-401 (10-100μM) induced a persistent increase in the oxygen consumption rate (OCR) that was accompanied by inhibition of glycolysis (extracellular acidification rate, ECAR) and a decrease in ATP-turnover. Furthermore, CORM-401 increased proton leak, diminished mitochondrial reserve capacity and enhanced non-mitochondrial respiration. Inactive CORM-401 (iCORM-401) neither induced mitochondrial uncoupling nor inhibited glycolysis, supporting a direct role of CO in the endothelial metabolic response induced by CORM-401. Interestingly, blockade of mitochondrial large-conductance calcium-regulated potassium ion channels (mitoBKCa) with paxilline abolished the increase in OCR promoted by CORM-401 without affecting ECAR; patch-clamp experiments confirmed that CO derived from CORM-401 activated mitoBKCa channels present in mitochondria. Conversely, stabilization of glycolysis by MG132 prevented CORM-401-mediated decrease in ECAR but did not modify the OCR response. In summary, we demonstrated in intact endothelial cells that CO induces a two-component metabolic response: uncoupling of mitochondrial respiration dependent on the activation of mitoBKCa channels and inhibition of glycolysis independent of mitoBKCa channels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
CORM-401
Sigma-Aldrich
Carbonyl cyanide 3-chlorophenylhydrazone, ≥97% (TLC), powder
Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
Rotenone, ≥95%
Sigma-Aldrich
Dimethyl sulfoxide, meets EP testing specifications, meets USP testing specifications
Sigma-Aldrich
Dimethyl sulfoxide, for molecular biology
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimethyl sulfoxide, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture