Skip to Content
Merck

The human urine metabolome.

PloS one (2013-09-12)
Souhaila Bouatra, Farid Aziat, Rupasri Mandal, An Chi Guo, Michael R Wilson, Craig Knox, Trent C Bjorndahl, Ramanarayan Krishnamurthy, Fozia Saleem, Philip Liu, Zerihun T Dame, Jenna Poelzer, Jessica Huynh, Faizath S Yallou, Nick Psychogios, Edison Dong, Ralf Bogumil, Cornelia Roehring, David S Wishart
ABSTRACT

Urine has long been a "favored" biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing the complete set of 2651 confirmed human urine metabolite species, their structures (3079 in total), concentrations, related literature references and links to their known disease associations are freely available at http://www.urinemetabolome.ca.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-(+)-Lactic acid solution, ~40% in H2O
Sigma-Aldrich
L-(+)-Lactic acid solution, meets analytical specification of Ph. Eur., BP, 88-92% total acid basis
Sigma-Aldrich
L-(+)-Lactic acid solution, in H2O, ≥85%
Sigma-Aldrich
Strontium, random pieces, 99%
Sigma-Aldrich
Tungsten, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Strontium, dendritic pieces, purified by distillation, 99.9% trace metals basis
Sigma-Aldrich
Tungsten, powder, 12 μm, 99.9% trace metals basis
Sigma-Aldrich
Tantalum, powder, −325 mesh, 99.9% trace metals basis
Sigma-Aldrich
Strontium, granular, 99% trace metals basis
Sigma-Aldrich
Tantalum, foil, thickness 0.05 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Strontium, dendritic pieces, purified by distillation, 99.99% trace metals basis
Sigma-Aldrich
L-(+)-Lactic acid solution, 30% in H2O (by weight)
Sigma-Aldrich
Tantalum, powder, 60-100 mesh, 99.9%
Supelco
L-(+)-Lactic acid, analytical standard
Supelco
Phenol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Tungsten, wire, diam. 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Phenol, unstabilized, ReagentPlus®, ≥99%
Sigma-Aldrich
Phenol, unstabilized, purified by redistillation, ≥99%
Sigma-Aldrich
Phenylacetic acid, 99%
Sigma-Aldrich
Tungsten, foil, thickness 0.127 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Tungsten, foil, thickness 0.5 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Tungsten, powder, ≤10 μm, ≥99.99% trace metals basis
Sigma-Aldrich
Suberic acid, purum, ≥98.0% (T)
Sigma-Aldrich
Phenol, ≥96.0% (calc. on dry substance, T)
Sigma-Aldrich
Tantalum, foil, thickness 0.25 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Tantalum
Sigma-Aldrich
Phenol, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Tantalum, wire, diam. 1.0 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Tantalum, foil, thickness 0.025 mm, ≥99.9% trace metals basis
Sigma-Aldrich
Tungsten, wire, diam. 1.0 mm, 99.99% trace metals basis