Skip to Content
Merck
  • Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks.

Topical application of dopaminergic compounds can inhibit deprivation myopia in chicks.

Experimental eye research (2020-09-14)
Kate Thomson, Cindy Karouta, Regan Ashby
ABSTRACT

Animal models have demonstrated a link between dysregulation of the retinal dopamine system and the development of experimental myopia (short-sightedness). However, pharmacological investigations of dopamine in animal models rely heavily on intravitreal or systemic administration, which have several limitations for longer-term experiments. We therefore investigated whether administration of dopamine as a topical eye drop can inhibit the development of form-deprivation myopia (FDM) in chicks. We also examined whether chemical modification of dopamine through deuterium substitution, which might enhance stability and bioavailability, can increase dopamine's effectiveness against FDM when given topically. Dopamine or deuterated dopamine (Dopamine-1,1,2,2-d4 hydrochloride) was administered as a daily intravitreal injection or as daily topical eye drops to chicks developing FDM over an ascending dose range (min. n = 6 per group). Axial length and refraction were measured following 4 days of treatment. Both intravitreal (ED50 = 0.002μmoles) and topical application (ED50 = 6.10μmoles) of dopamine inhibited the development of FDM in a dose-dependent manner. Intravitreal injections, however, elicited a significantly higher level of protection relative to topical eye drops (p < 0.01). Deuterated dopamine inhibited FDM to a similar extent as unmodified dopamine when administered as intravitreal injections (p = 0.897) or topical eye drops (p = 0.921). Both intravitreal and topical application of dopamine inhibit the development of FDM in a dose-dependent manner, indicating that topical administration may be an effective avenue for longer-term dopamine experiments. Deuterium substitution does not alter the protection afforded by dopamine against FDM when given as either an intravitreal injection or topical eye drop.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dopamine-1,1,2,2-d4 hydrochloride, 98 atom % D
Sigma-Aldrich
Dopamine hydrochloride