Skip to Content
Merck
  • Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells.

Analysis of Cytoplasmic and Membrane Molecular Crowding in Genetically Programmed Synthetic Cells.

Biomacromolecules (2020-05-23)
David Garenne, Vincent Noireaux
ABSTRACT

Building genetically programmed synthetic cell systems by molecular integration is a powerful and effective approach to capture the synergies between biomolecules when they are put together. In this work, we characterized quantitatively the effects of molecular crowding on gene expression in the cytoplasm of minimal cells, when a crowding agent is added to the reaction, and on protein self-assembly at the membrane, when a crowding agent is attached to the lipid bilayer. We demonstrate that achieving membrane crowding only is sufficient to keep cytoplasmic expression at its highest and to promote the polymerization of the MreB cytoskeletal protein at the lipid bilayer into a network that is mechanically sturdy. Furthermore, we show that membrane crowding can be emulated by different types of macromolecules, supporting a purely entropic mode of action for supramolecular assembly of cytoskeletal proteins at the bilayer. These unanticipated results provide quantitative and general insights relevant to synthetic cell builders.

MATERIALS
Product Number
Brand
Product Description

Avanti
16:0 PEG5000 PE, Avanti Research - A Croda Brand 880200P, powder
Avanti
16:0 PEG2000 PE, Avanti Research - A Croda Brand 880160P, powder
Avanti
16:0 Biotinyl Cap PE, Avanti Research - A Croda Brand 870277P, powder
Avanti
Egg PC (95%), Avanti Research - A Croda Brand
Avanti
Egg PC (95%), Avanti Research - A Croda Brand