Saltar al contenido
Merck

Guided cobalamin biosynthesis supports Dehalococcoides mccartyi reductive dechlorination activity.

Philosophical transactions of the Royal Society of London. Series B, Biological sciences (2013-03-13)
Jun Yan, Jeongdae Im, Yi Yang, Frank E Löffler
RESUMEN

Dehalococcoides mccartyi strains are corrinoid-auxotrophic Bacteria and axenic cultures that require vitamin B12 (CN-Cbl) to conserve energy via organohalide respiration. Cultures of D. mccartyi strains BAV1, GT and FL2 grown with limiting amounts of 1 µg l(-1) CN-Cbl quickly depleted CN-Cbl, and reductive dechlorination of polychlorinated ethenes was incomplete leading to vinyl chloride (VC) accumulation. In contrast, the same cultures amended with 25 µg l(-1) CN-Cbl exhibited up to 2.3-fold higher dechlorination rates, 2.8-9.1-fold increased growth yields, and completely consumed growth-supporting chlorinated ethenes. To explore whether known cobamide-producing microbes supply Dehalococcoides with the required corrinoid cofactor, co-culture experiments were performed with the methanogen Methanosarcina barkeri strain Fusaro and two acetogens, Sporomusa ovata and Sporomusa sp. strain KB-1, as Dehalococcoides partner populations. During growth with H2/CO2, M. barkeri axenic cultures produced 4.2 ± 0.1 µg l(-1) extracellular cobamide (factor III), whereas the Sporomusa cultures produced phenolyl- and p-cresolyl-cobamides. Neither factor III nor the phenolic cobamides supported Dehalococcoides reductive dechlorination activity suggesting that M. barkeri and the Sporomusa sp. cannot fulfil Dehalococcoides' nutritional requirements. Dehalococcoides dechlorination activity and growth occurred in M. barkeri and Sporomusa sp. co-cultures amended with 10 µM 5',6'-dimethylbenzimidazole (DMB), indicating that a cobalamin is a preferred corrinoid cofactor of strains BAV1, GT and FL2 when grown with chlorinated ethenes as electron acceptors. Even though the methanogen and acetogen populations tested did not produce cobalamin, the addition of DMB enabled guided biosynthesis and generated a cobalamin that supported Dehalococcoides' activity and growth. Guided cobalamin biosynthesis may offer opportunities to sustain and enhance Dehalococcoides activity in contaminated subsurface environments.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Trichloroethylene, ACS reagent, ≥99.5%
Supelco
Trichloroethylene, analytical standard, stabilized with 30 – 50 ppm Diisopropylamine
Sigma-Aldrich
5,6-Dimethylbenzimidazole, ≥99%
Supelco
Trichloroethylene solution, certified reference material, 5000 μg/mL in methanol
Sigma-Aldrich
Trichloroethylene, anhydrous, contains 40 ppm diisopropylamine as stabilizer, ≥99%
Sigma-Aldrich
Trichloroethylene, JIS special grade, ≥99.5%