Skip to Content
Merck
  • Severe neonatal anemia increases intestinal permeability by disrupting epithelial adherens junctions.

Severe neonatal anemia increases intestinal permeability by disrupting epithelial adherens junctions.

American journal of physiology. Gastrointestinal and liver physiology (2020-02-25)
Krishnan MohanKumar, Kopperuncholan Namachivayam, Nithya Sivakumar, Natascha G Alves, Venkataramana Sidhaye, Jayanta K Das, Yerin Chung, Jerome W Breslin, Akhil Maheshwari
ABSTRACT

Anemia is a frequent diagnosis in critically ill infants, but the clinical implications of severe anemia in these patients remain unclear. In this study, we examined preweaned mice to investigate the effects of severe anemia during early infancy on gut mucosal permeability. C57BL/6 mice were subjected to timed phlebotomy between postnatal days (P) 2-10 to induce severe anemia (hematocrits 20%-24%), and intestinal permeability was tracked longitudinally between P10 and P20 as intestine-to-plasma translocation of enteral macromolecules and bacterial translocation. Epithelial junctions were evaluated by electron microscopy, polymerase chain reactions, immunohistochemistry, and/or enzyme immunoassays on intestinal tissues, Caco-2 intestinal epithelial-like cells, and colonic organoids. Preweaned mouse pups showed an age-related susceptibility to severe anemia, with increased intestinal permeability to enteral macromolecules (dextran, ovalbumin, β-lactoglobulin) and luminal bacteria. Electron micrographs showed increased paracellular permeability and ultrastructural abnormalities of the adherens junctions. These findings were explained by the loss of E-cadherin in epithelial cells, which was caused by destabilization of the E-cadherin (Cdh1) mRNA because of microRNA let-7e-5p binding to the 3'-untranslated region. Severe anemia resulted in a disproportionate and persistent increase in intestinal permeability in preweaned mice because of the disruption of epithelial adherens junctions. These changes are mediated via microRNA let-7e-mediated depletion of Cdh1 mRNA.NEW & NOTEWORTHY This research article shows that newborn infants with severe anemia show an age-related susceptibility to developing increased intestinal permeability to ingested macromolecules. This abnormal permeability develops because of abnormalities in intestinal epithelial junctions caused by a deficiency of the molecule E-cadherin in epithelial cells. The deficiency of E-cadherin is caused by destabilization of its mRNA precursor because of increased expression and binding of another molecule, the microRNA let-7e-5p, to the E-cadherin mRNA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Actinomycin D, from Streptomyces sp., ~98% (HPLC)
Millipore
EDTA, ULTROL® Grade, 500 mM Solution, pH 8.0
Roche
Penicillin-Streptomycin, suitable for cell culture, lyophilized (clear, colorless solution after reconstitution), non-sterile; 0.2 μm filtered, sufficient for 20 mL
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
β-Lactoglobulin from bovine milk, ≥90% (PAGE), lyophilized powder
Sigma-Aldrich
DAPI, for nucleic acid staining