Skip to Content
Merck
  • A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus.

A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus.

Proceedings of the National Academy of Sciences of the United States of America (2019-10-09)
Alice J Stelfox, Thomas A Bowden
ABSTRACT

The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed β-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sialic Acid Assay Kit, sufficient for 100 colorimetric or fluorometric tests
Sigma-Aldrich
Fetuin from fetal bovine serum, lyophilized powder
Sigma-Aldrich
2′-(4-Methylumbelliferyl)-α-D-N-acetylneuraminic acid sodium salt hydrate, ≥95% (HPLC)