Accéder au contenu
Merck

Effects of the Hedgehog Signaling Inhibitor Itraconazole on Developing Rat Ovaries.

Toxicological sciences : an official journal of the Society of Toxicology (2021-04-28)
Hanna Katarina Lilith Johansson, Camilla Taxvig, Gustav Peder Mohr Olsen, Terje Svingen
RÉSUMÉ

Early ovary development is considered to be largely hormone independent; yet, there are associations between fetal exposure to endocrine disrupting chemicals and reproductive disorders in women. This can potentially be explained by perturbations to establishment of ovarian endocrine function rather than interference with an already established hormone system. In this study we explore if Hedgehog (HH) signaling, a central pathway for correct ovary development, can be disrupted by exposure to HH-disrupting chemicals, using the antifungal itraconazole as model compound. In the mouse Leydig cell line TM3, used as a proxy for ovarian theca cells, itraconazole exposure had a suppressing effect on genes downstream of HH signaling, such as Gli1. Exposing explanted rat ovaries (gestational day 22 or postnatal day 3) to 30 µM itraconazole for 72 h induced significant suppression of genes in the HH signaling pathway with altered Ihh, Gli1, Ptch1, and Smo expression similar to those previously observed in Ihh/Dhh knock-out mice. Exposing rat dams to 50 mg/kg bw/day in the perinatal period did not induce observable changes in the offspring's ovaries. Overall, our results suggest that HH signal disruptors may affect ovary development with potential long-term consequences for female reproductive health. However, potent HH inhibitors would likely cause severe teratogenic effects at doses lower than those causing ovarian dysgenesis, so the concern with respect to reproductive disorder is for the presence of HH disruptors at low concentration in combination with other ovary or endocrine disrupting compounds.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Albumine de sérum bovin, lyophilized powder, essentially fatty acid free, ≥96% (agarose gel electrophoresis)
Sigma-Aldrich
Anticorps monoclonal anti-α-actine de muscle lisse, clone 1A4, ascites fluid
Sigma-Aldrich
Itraconazole, ≥98% (HPLC)