Accéder au contenu
Merck

The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction.

Redox biology (2020-10-04)
Hwa-Young Lee, Hyun-Kyoung Kim, The-Hiep Hoang, Siyoung Yang, Hyung-Ryong Kim, Han-Jung Chae
RÉSUMÉ

Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23-24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1α phosphorylation and XBP-1 splicing and were transiently increased, but IRE1α sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway "the UPR; IRE1α phosphorylation and XBP-1 splicing and the UPR failure; IRE1α cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Tunicamycine from Streptomyces sp.
Sigma-Aldrich
Protein A from Staphylococcus aureus, Soluble, essentially salt-free, lyophilized powder, extracellular
Sigma-Aldrich
4-Phenylbutyric acid, 99%
Millipore
Protéine G-Sépharose, Fast Flow (à débit élevé), recombinant, expressed in E. coli, aqueous ethanol suspension
Sigma-Aldrich
D-(+)-galactose, ≥99% (HPLC)
Sigma-Aldrich
DL-Cysteine, technical grade
Sigma-Aldrich
Anti-Rabbit IgG (whole molecule)–FITC antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
N,N′-Dimethyl-9,9′-biacridinium dinitrate, used as chemiluminescent reagent
Sigma-Aldrich
Anti-Mouse IgG (whole molecule)−TRITC antibody produced in goat, IgG fraction of antiserum, buffered aqueous solution