Accéder au contenu
Merck
  • Silencing the FOLR2 Gene Inhibits Cell Proliferation and Increases Apoptosis in the NCI-H1650 Non-Small Cell Lung Cancer Cell Line via Inhibition of AKT/Mammalian Target of Rapamycin (mTOR)/Ribosomal Protein S6 Kinase 1 (S6K1) Signaling.

Silencing the FOLR2 Gene Inhibits Cell Proliferation and Increases Apoptosis in the NCI-H1650 Non-Small Cell Lung Cancer Cell Line via Inhibition of AKT/Mammalian Target of Rapamycin (mTOR)/Ribosomal Protein S6 Kinase 1 (S6K1) Signaling.

Medical science monitor : international medical journal of experimental and clinical research (2018-11-12)
Xiaohua Xu, Jianyang Jiang, Lijuan Yao, Bing Ji
RÉSUMÉ

BACKGROUND The FOLR2 gene encodes folate receptor-beta (FR-beta), which is expressed by tumor-associated macrophages. The effects of FOLR2 gene expression in non-small cell lung cancer (NSCLC) remains unknown. This study aimed to investigate the effects of FOLR2 gene expression and gene silencing in human NSCLC cell lines and normal human bronchial epithelial (HBE) cells in vitro. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to detect the expression of the FOLR2 gene, cell cycle and apoptosis-associated genes in normal HBE cells and the NSCLC cell lines, A549, NCI-H1299, NCI-H1650, and NCI-H460. Using small interfering RNA (siRNA), or silencing RNA, FOLR2 gene silencing was performed for NCI-H1650 cells. Cell counting kit-8 (CCK-8) was used to measure cell viability. Cell cycle and apoptosis were determined using flow cytometry. Western blot evaluated the expression of Akt, mTOR, and S6K1 signaling. RESULTS Expression of the FOLR2 gene was increased in NSCLC cells compared with normal HBE cells. Silencing of the expression of the FOLR2 gene in NCI-H1650 cells reduced cell viability, increased cell apoptosis, and arrested cells in the G1 phase of the cell cycle, decreased the expression of cyclin D1, upregulated expression of cell cycle inhibitors, p21 and p27, upregulated the expression of Bax/Bcl-2, and inhibited phosphorylation of AKT, mTOR, and S6K1. CONCLUSIONS Silencing of the FOLR2 gene inhibited phosphorylation of AKT, mTOR, and S6K1, inhibited cell proliferation and increased apoptosis in the NCI-H1650 human NSCLC cell line.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anti-phospho-Akt (pSer129) antibody produced in rabbit, affinity isolated antibody