Accéder au contenu
Merck

Adipocyte derived paracrine mediators of mammary ductal morphogenesis controlled by retinoic acid receptors.

Developmental biology (2010-10-27)
Christine V Marzan, Tara S Kupumbati, Silvina P Bertran, TraceyAnn Samuels, Boris Leibovitch, Rafael Mira-y-Lopez, Liliana Ossowski, Eduardo F Farias
RÉSUMÉ

We generated a transgenic (Tg)-mouse model expressing a dominant negative-(DN)-RARα, (RARαG303E) under adipocytes-specific promoter to explore the paracrine role of adipocyte retinoic acid receptors (RARs) in mammary morphogenesis. Transgenic adipocytes had reduced level of RARα, β and γ, which coincided with a severely underdeveloped pubertal and mature ductal tree with profoundly decreased epithelial cell proliferation. Transplantation experiments of mammary epithelium and of whole mammary glands implicated a fat-pad dependent paracrine mechanism in the stunted phenotype of the epithelial ductal tree. Co-cultures of primary adipocytes, or in vitro differentiated adipocyte cell line, with mammary epithelium showed that when activated, adipocyte-RARs contribute to generation of secreted proliferative and pro-migratory factors. Gene expression microarrays revealed a large number of genes regulated by adipocyte-RARs. Among them, pleiotrophin (PTN) was identified as the paracrine effectors of epithelial cell migration. Its expression was found to be strongly inhibited by DN-RARα, an inhibition relieved by pharmacological doses of all-trans retinoic acid (atRA) in culture and in vivo. Moreover, adipocyte-PTHR, another atRA responsive gene, was found to be an up-stream regulator of PTN. Overall, these results support the existence of a novel paracrine loop controlled by adipocyte-RAR that regulates the mammary ductal tree morphogenesis.