Accéder au contenu
Merck

An Integrated System for Precise Genome Modification in Escherichia coli.

PloS one (2015-09-04)
Huseyin Tas, Cac T Nguyen, Ravish Patel, Neil H Kim, Thomas E Kuhlman
RÉSUMÉ

We describe an optimized system for the easy, effective, and precise modification of the Escherichia coli genome. Genome changes are introduced first through the integration of a 1.3 kbp Landing Pad consisting of a gene conferring resistance to tetracycline (tetA) or the ability to metabolize the sugar galactose (galK). The Landing Pad is then excised as a result of double-strand breaks by the homing endonuclease I-SceI, and replaced with DNA fragments bearing the desired change via λ-Red mediated homologous recombination. Repair of the double strand breaks and counterselection against the Landing Pad (using NiCl2 for tetA or 2-deoxy-galactose for galK) allows the isolation of modified bacteria without the use of additional antibiotic selection. We demonstrate the power of this method to make a variety of genome modifications: the exact integration, without any extraneous sequence, of the lac operon (~6.5 kbp) to any desired location in the genome and without the integration of antibiotic markers; the scarless deletion of ribosomal rrn operons (~6 kbp) through either intrachromosomal or oligonucleotide recombination; and the in situ fusion of native genes to fluorescent reporter genes without additional perturbation.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Safe Harbor Landing Pad Cell Line Jurkat T-Lymphocytes
Sigma-Aldrich
Safe Harbor Landing Pad Cell Line THP-1 Monocytes
Sigma-Aldrich
Safe Harbor Landing Pad Cell Line HCT-116 Cancer Cells
Sigma-Aldrich
Safe Harbor Landing Pad Cell Line A549 Cancer Cells
Sigma-Aldrich
Safe Harbor Landing Pad Cell Line A375 Cancer Cells