Skip to Content
Merck

Antinociceptive effects of novel A2B adenosine receptor antagonists.

The Journal of pharmacology and experimental therapeutics (2003-10-18)
Osama M Abo-Salem, Alaa M Hayallah, Andras Bilkei-Gorzo, Barbara Filipek, Andreas Zimmer, Christa E Müller
ABSTRACT

Caffeine, an adenosine A1, A2A, and A2B receptor antagonist, is frequently used as an adjuvant analgesic in combination with nonsteroidal anti-inflammatory drugs or opioids. In this study, we have examined the effects of novel specific adenosine receptor antagonists in an acute animal model of nociception. Several A2B-selective compounds showed antinociceptive effects in the hot-plate test. In contrast, A1- and A2A-selective compounds did not alter pain thresholds, and an A3 adenosine receptor antagonist produced thermal hyperalgesia. Evaluation of psychostimulant effects of these compounds in the open field showed only small effects of some antagonists at high doses. Coadministration of low, subeffective doses of A2B-selective antagonists with a low dose of morphine enhanced the efficacy of morphine. Our results indicate that analgesic effects of caffeine are mediated, at least in part, by A2B adenosine receptors.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
PSB 1115 potassium salt hydrate, ≥95% (HPLC)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPrice
1 g
Please contact Customer Service for Availability
€54.90
5 g
Please contact Customer Service for Availability
€188.00

To order products, please contact your local dealer.

Sigma-Aldrich
PSB36, ≥98% (HPLC)
Sign Into View Organizational & Contract Pricing
SKUPack SizeAvailabilityPrice
1 g
Please contact Customer Service for Availability
€54.90
5 g
Please contact Customer Service for Availability
€188.00

To order products, please contact your local dealer.