Skip to Content
Merck
  • Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA.

Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA.

Archives of toxicology (2014-05-07)
Oskar Karlsson, Anna-Lena Berg, Jörg Hanrieder, Gunnel Arnerup, Anna-Karin Lindström, Eva B Brittebo
ABSTRACT

The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9-10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3-6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.

MATERIALS
Product Number
Brand
Product Description

Supelco
Residual Solvent - Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ultrapure Acetonitrile
Sigma-Aldrich
Acetonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acetonitrile, for preparative HPLC, ≥99.8% (GC)
Sigma-Aldrich
Trifluoroacetic acid, ReagentPlus®, 99%
Sigma-Aldrich
Trifluoroacetic acid, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
Trifluoroacetic acid, ≥99%, for protein sequencing
Sigma-Aldrich
Acetonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acetonitrile, ≥99.5% (GC)
Supelco
Acetonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Acetonitrile, electronic grade, 99.999% trace metals basis
Supelco
Trifluoroacetic acid, analytical standard
Supelco
Acetonitrile, analytical standard
Sigma-Aldrich
Acetonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Trifluoroacetic acid, suitable for HPLC, ≥99.0%
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acetonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitrile, suitable for HPLC, gradient grade, ≥99.9%