Skip to Content
Merck
  • Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles.

Quantifying dithiothreitol displacement of functional ligands from gold nanoparticles.

Analytical and bioanalytical chemistry (2012-10-30)
De-Hao Tsai, Melanie P Shelton, Frank W DelRio, Sherrie Elzey, Suvajyoti Guha, Michael R Zachariah, Vincent A Hackley
ABSTRACT

Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional constructs. The underlying assumption is that DTT is smaller and much more reactive toward gold compared with most ligands of interest, and as a result will reactively displace the ligands from surface sites thereby enabling their quantification. In this study, we use complementary dimensional and spectroscopic methods to characterize the efficiency of DTT displacement. Thiolated methoxypolyethylene glycol (SH-PEG) and bovine serum albumin (BSA) were chosen as representative ligands. Results clearly show that (1) DTT does not completely displace bound SH-PEG or BSA from AuNPs, and (2) the displacement efficiency is dependent on the binding affinity between the ligands and the AuNP surface. Additionally, the displacement efficiency for conjugated SH-PEG is moderately dependent on the molecular mass (yielding efficiencies ranging from 60 to 80% measured by ATR-FTIR and ≈90% by ES-DMA), indicating that the displacement efficiency for SH-PEG is predominantly determined by the S-Au bond. BSA is particularly difficult to displace with DTT (i.e., the displacement efficiency is nearly zero) when it is in the so-called normal form. The displacement efficiency for BSA improves to 80% when it undergoes a conformational change to the expanded form through a process of pH change or treatment with a surfactant. An analysis of the three-component system (SH-PEG + BSA + AuNP) indicates that the presence of SH-PEG decreases the displacement efficiency for BSA, whereas the displacement efficiency for SH-PEG is less impacted by the presence of BSA.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) methyl ether, BioUltra, 500
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 750
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn ~2,000
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 550
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 5,000
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 10,000
Sigma-Aldrich
Poly(ethylene glycol) methyl ether, average Mn 20,000
Sigma-Aldrich
Methoxypolyethylene glycol 350, average mol wt 350
Sigma-Aldrich
Methylbenzethonium chloride