Skip to Content
Merck
  • The Protein Encoded by the CCDC170 Breast Cancer Gene Functions to Organize the Golgi-Microtubule Network.

The Protein Encoded by the CCDC170 Breast Cancer Gene Functions to Organize the Golgi-Microtubule Network.

EBioMedicine (2017-07-09)
Pengtao Jiang, Yueran Li, Andrey Poleshko, Valentina Medvedeva, Natalia Baulina, Yongchao Zhang, Yan Zhou, Carolyn M Slater, Trinity Pellegrin, Jason Wasserman, Michael Lindy, Andrey Efimov, Mary Daly, Richard A Katz, Xiaowei Chen
ABSTRACT

Genome-Wide Association Studies (GWAS) and subsequent fine-mapping studies (>50) have implicated single nucleotide polymorphisms (SNPs) located at the CCDC170/C6ORF97-ESR1 locus (6q25.1) as being associated with the risk of breast cancer. Surprisingly, our analysis using genome-wide differential allele-specific expression (DASE), an indicator for breast cancer susceptibility, suggested that the genetic alterations of CCDC170, but not ESR1, account for GWAS-associated breast cancer risk at this locus. Breast cancer-associated CCDC170 nonsense mutations and rearrangements have also been detected, with the latter being specifically implicated in driving breast cancer. Here we report that the wild type CCDC170 protein localizes to the region of the Golgi apparatus and binds Golgi-associated microtubules (MTs), and that breast cancer-linked truncations of CCDC170 result in loss of Golgi localization. Overexpression of wild type CCDC170 triggers Golgi reorganization, and enhances Golgi-associated MT stabilization and acetyltransferase ATAT1-dependent α-tubulin acetylation. Golgi-derived MTs regulate cellular polarity and motility, and we provide evidence that dysregulation of CCDC170 affects polarized cell migration. Taken together, our findings demonstrate that CCDC170 plays an essential role in Golgi-associated MT organization and stabilization, and implicate a mechanism for how perturbations in the CCDC170 gene may contribute to the hallmark changes in cell polarity and motility seen in breast cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-AKAP9 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Mechlorethamine hydrochloride, 98%
Sigma-Aldrich
Monoclonal Anti-β-Actin antibody produced in mouse, clone AC-74, ascites fluid
Sigma-Aldrich
Anti-MAP4 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Monoclonal Anti-α-Tubulin antibody produced in mouse, ascites fluid, clone B-5-1-2