- Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.
Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant.
Dalton transactions (Cambridge, England : 2003) (2015-06-10)
Subodh Kumar, Nikita Singhal, Raj K Singh, Piyush Gupta, Raghuvir Singh, Suman L Jain
PMID26055991
ABSTRACT
Chitosan coated magnetic nanoparticles were synthesized and used as a support for the immobilization of the cobalt(II) acetylacetonate complex [Co(acac)2] and quaternary triphenylphosphonium bromide [P(+)Ph3Br(-)] targeting -NH2 and -OH moieties located on the surface of chitosan. The synthesized material was used as a catalyst for one pot direct synthesis of cyclic carbonates from olefins via an oxidative carboxylation approach with carbon dioxide using isobutyraldehyde as the sacrificial reductant and molecular oxygen as the oxidant. After the reaction, the catalyst was recovered by applying an external magnet and reused for several runs without significant loss in catalytic activity and no leaching was observed during this course.
MATERIALS
Product Number
Brand
Product Description
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Triphenylphosphine, polymer-bound, 100-200 mesh, extent of labeling: ~1-1.5 mmol/g Capacity (Phosphor)