Skip to Content
Merck
  • The influence of NaYF₄:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles.

The influence of NaYF₄:Yb,Er size/phase on the multimodality of co-encapsulated magnetic photon-upconverting polymeric nanoparticles.

Dalton transactions (Cambridge, England : 2003) (2014-10-07)
Michael Challenor, Peijun Gong, Dirk Lorenser, Michael J House, Robert C Woodward, Timothy St Pierre, Melinda Fitzgerald, Sarah A Dunlop, David D Sampson, K Swaminathan Iyer
ABSTRACT

We report the synthesis, characterisation and evaluation of the in vitro biocompatibility of polymeric nanoparticles with both magnetic and upconverting fluorescent properties. The particles consist of superparamagnetic iron oxide nanoparticles and upconverting NaYF4:Yb,Er nanoparticles co-encapsulated within a poly(glycidyl methacrylate) sphere. Two different upconverting nanoparticles (10 nm α-NaYF4:Yb,Er and 50 nm β-NaYF4:Yb,Er) were synthesised and the optical and magnetic properties of the composite polymeric nanoparticle systems assessed by near infra-red laser spectroscopy, SQUID magnetometry and proton relaxometry. A live-dead assay was used to assess the viability of PC-12 neural cells incubated with varying concentrations of the nanoparticles. The composite nanoparticles produced no observed impact on cellular viability even at concentrations as high as 1000 μg mL(-1). Confocal microscopy revealed uptake of nanoparticles by PC-12 cells and peri-nuclear cytoplasmic localisation. Both particle systems show favourable magnetic properties. However, only the nanospheres containing 50 nm β-NaYF4:Yb,Er were suitable for optical tracking because the presence of iron oxide within the composites imparts a significant quenching of the upconversion emission. This study demonstrates the size and phase of the upconverting nanoparticles are important parameters that have to be taken into account in the design of multimodal nanoparticles using co-encapsulation strategies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron(III) acetylacetonate, 97%
Sigma-Aldrich
Sodium pyruvate, SAJ special grade, ≥95.0%
Sigma-Aldrich
Sodium pyruvate, ReagentPlus®, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Sodium pyruvate, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Sodium pyruvate, BioXtra, ≥99%
Sigma-Aldrich
Sodium pyruvate, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
Sigma-Aldrich
Iron(III) acetylacetonate, ≥99.9% trace metals basis
Sigma-Aldrich
Iron(III) acetylacetonate, purum, ≥97.0% (RT)
Sigma-Aldrich
Sodium pyruvate, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%
Sigma-Aldrich
Oleic acid, BioReagent, suitable for cell culture
Sigma-Aldrich
Oleic acid, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Sigma-Aldrich
1-Octadecene, ≥95.0% (GC)
Supelco
Oleic acid, analytical standard
Sigma-Aldrich
Ethidium homodimer, suitable for fluorescence, ~90% (HPCE)
Supelco
1-Octadecene, analytical standard, ≥99.0% (GC)
Sigma-Aldrich
1-Octadecene, technical grade, 90%
Sigma-Aldrich
Oleic acid, ≥99% (GC)
Supelco
Oleic acid, Selectophore, ≥99%
Sigma-Aldrich
Oleylamine, technical grade, 70%
Sigma-Aldrich
Oleic acid, SAJ first grade, ≥70.0%
Sigma-Aldrich
Oleic acid, technical grade, 90%
Sigma-Aldrich
Oleic acid, natural, FCC
SAFC
Oleylamine, ≥98% (primary amine)
Oleic acid, European Pharmacopoeia (EP) Reference Standard