Skip to Content
Merck

Assessment of biomarkers of cadmium stress in lettuce.

Ecotoxicology and environmental safety (2008-10-28)
M S Monteiro, C Santos, A M V M Soares, R M Mann
ABSTRACT

Laboratory and field studies have provided encouraging insights into the capacity of plants to act as biomonitors of environmental quality through the use of biomarkers. However, a better understanding of the overall process of Cd-induced senescence, describing the cascade of Cd effects in plants is needed for a selection of relevant biomarkers of Cd stress. In order to approach this, 5-week old Lactuca sativa L. were exposed for 14 days to 100muM Cd(NO(3))(2) and harvested at days 0, 1, 3, 7 and 14. The parameters measured included classical endpoints (shoot and root growth) and biochemical endpoints related to photosynthesis, nutrients content, and oxidative stress. Cadmium-exposed plants displayed nutrient imbalances in leaves and roots. Photosynthetic efficiency was significantly decreased and lipid peroxidation was enhanced. Antioxidant enzymes were significantly altered during exposure-catalase was inhibited by the end of exposure and peroxidase was induced at day 1 in young leaves. These alterations culminated in a decrease in shoot growth after 14-days exposure to Cd. Biochemical alterations could be used in integrative approaches with classical endpoints in ecotoxicological tests for Cd and after further testing in real scenarios conditions, they could form the basis of a plant biomarkers battery for monitoring and predicting early effects of exposure to Cd.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cadmium nitrate tetrahydrate, 99.997% trace metals basis
Sigma-Aldrich
Cadmium nitrate tetrahydrate, 98%
Sigma-Aldrich
Cadmium standard solution, suitable for atomic absorption spectrometry, 1 mg/mL Cd+2, 1000 ppm Cd+2