Skip to Content
Merck
  • Protective effects of n-6 fatty acids-enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin A4 and its receptor.

Protective effects of n-6 fatty acids-enriched diet on intestinal ischaemia/reperfusion injury involve lipoxin A4 and its receptor.

British journal of pharmacology (2014-10-10)
T Gobbetti, S Ducheix, P le Faouder, T Perez, F Riols, J Boue, J Bertrand-Michel, M Dubourdeau, H Guillou, M Perretti, N Vergnolle, N Cenac
ABSTRACT

Long-term intake of dietary fatty acids is known to predispose to chronic inflammation, but their effects on acute intestinal ischaemia/reperfusion (I/R) injury is unknown. The aim of this study was to determine the consequences of a diet rich in n-3 or n-6 polyunsaturated fatty acids (PUFA) on intestinal I/R-induced damage. Mice were fed three different isocaloric diets: a balanced diet used as a control and two different PUFA-enriched diets, providing either high levels of n-3 or of n-6 PUFA. Intestinal injury was evaluated after intestinal I/R. PUFA metabolites were quantitated in intestinal tissues by LC-MS/MS. In control diet-fed mice, intestinal I/R caused inflammation and increased COX and lipoxygenase-derived metabolites compared with sham-operated animals. Lipoxin A4 (LxA4 ) was significantly and selectively increased after ischaemia. Animals fed a high n-3 diet did not display a different inflammatory profile following intestinal I/R compared with control diet-fed animals. In contrast, intestinal inflammation was decreased in the I/R group fed with high n-6 diet and level of LxA4 was increased post-ischaemia compared with control diet-fed mice. Blockade of the LxA4 receptor (Fpr2), prevented the anti-inflammatory effects associated with the n-6 rich diet. This study indicates that high levels of dietary n-6, but not n-3, PUFAs provides significant protection against intestinal I/R-induced damage and demonstrates that the endogenous production of LxA4 can be influenced by diet.

MATERIALS
Product Number
Brand
Product Description

Supelco
Sodium chloride, Pharmaceutical Secondary Standard; Certified Reference Material
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
Methanol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Methanol, Absolute - Acetone free
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Water, Deionized
Sigma-Aldrich
Water, ACS reagent
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Water, suitable for HPLC
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Water, for TOC analysis
Supelco
4-tert-Octylphenol monoethoxylate solution, 10 μg/mL in acetone, analytical standard
SAFC
Sodium chloride solution, 5 M
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
Water, suitable for ion chromatography
Supelco
Methanol, analytical standard
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Water, tested according to Ph. Eur.
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy