Skip to Content
Merck
  • Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior.

Arrayed three-dimensional structures designed to induce and maintain a cell pattern by a topographical effect on cell behavior.

Materials science & engineering. C, Materials for biological applications (2015-02-18)
Takao Saito, Kay Teraoka, Kazuyoshi Ota
ABSTRACT

We investigated the ability of the microscale topography of a three-dimensional (3-D) structure arrayed on the surface of a substrate to induce and maintain a cell pattern by controlling cell behavior. Arrayed 3-D structures having different topographical characteristics, i.e., geometry and dimension, were fabricated on the surface of glass substrates by masked sand blasting. Each 3-D structure was designed to have a unit composed of a planar island for cell growth and surrounding grooves exhibiting cell repellency. The principle of the cell repellency is based on the topographical control of cell attachment, spreading, growth, and differentiation by utilizing the spatially restricted microenvironment of the grooves. Grooves with a width of less than approximately 116μm and a depth of approximately 108μm formed narrow V-shapes with a dihedral angle of less than approximately 44.4°. Cell culture experiments using osteoblast-like cells demonstrated that these narrow V-shaped grooves had sufficient cell repellency to form and maintain a cell pattern on the surface for at least 14days. From the present study, arrayed 3-D structures designed to have narrow V-shaped grooves with optimal topographical characteristics for cell repellency are promising for the formation of stable cell patterns for creating novel cell microarray platforms without using conventional protein/cell-repellent chemicals.

MATERIALS
Product Number
Brand
Product Description

USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol solution, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Edelfosine, ≥95% (HPLC)
Supelco
tert-Butanol, analytical standard
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
Sigma-Aldrich
tert-Butanol, suitable for HPLC, ≥99.5%
Sigma-Aldrich
tert-Butanol, anhydrous, ≥99.5%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 2% 2-butanone, F25 MEK1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
tert-Butanol, TEBOL® 99, ≥99.3%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
tert-Butanol, ≥99% (GC)
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
tert-Butanol, ACS reagent, ≥99.0%