- Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells.
Isoproterenol increases Na+-K+-ATPase activity by membrane insertion of alpha-subunits in lung alveolar cells.
Catecholamines promote lung edema clearance via beta-adrenergic-mediated stimulation of active Na+ transport across the alveolar epithelium. Because alveolar epithelial type II cell Na+-K+-ATPase contributes to vectorial Na+ flux, the present study was designed to investigate whether Na+-K+-ATPase undergoes acute changes in its catalytic activity in response to beta-adrenergic-receptor stimulation. Na+-K+-ATPase activity increased threefold in cells incubated with 1 microM isoproterenol for 15 min, which also resulted in a fourfold increase in the cellular levels of cAMP. Forskolin (10 microM) also stimulated Na+-K+-ATPase activity as well as ouabain binding. The increase in Na+-K+-ATPase activity was abolished when cells were coincubated with a cAMP-dependent protein kinase inhibitor. This stimulation, however, was not due to protein kinase-dependent phosphorylation of the Na+-K+-ATPase alpha-subunit; rather, it was the result of an increased number of alpha-subunits recruited from the late endosomes into the plasma membrane. The recruitment of alpha-subunits to the plasma membrane was prevented by stabilizing the cortical actin cytoskeleton with phallacidin or by blocking anterograde transport with brefeldin A but was unaffected by coincubation with amiloride. In conclusion, isoproterenol increases Na+-K+-ATPase activity in alveolar type II epithelial cells by recruiting alpha-subunits into the plasma membrane from an intracellular compartment in an Na+-independent manner.