Skip to Content
Merck
  • Probing the binding of two sugar bearing anticancer agents aristololactam-β-(D)-glucoside and daunomycin to double stranded RNA polynucleotides: a combined spectroscopic and calorimetric study.

Probing the binding of two sugar bearing anticancer agents aristololactam-β-(D)-glucoside and daunomycin to double stranded RNA polynucleotides: a combined spectroscopic and calorimetric study.

Molecular bioSystems (2012-05-19)
Abhi Das, Gopinatha Suresh Kumar
ABSTRACT

The plant alkaloid aristololactam-β-d-glucoside and the anticancer chemotherapy drug daunomycin are two sugar bearing DNA binding antibiotics. The binding of these molecules to three double stranded ribonucleic acids, poly(A)·poly(U), poly(I)·poly(C) and poly(C)·poly(G), was studied using various biophysical techniques. Absorbance and fluorescence studies revealed that these molecules bound non-cooperatively to these ds RNAs with the binding affinities of the order 10(6) for daunomycin and 10(5) M(-1) for aristololactam-β-d-glucoside. Fluorescence quenching and viscosity studies gave evidence for intercalative binding. The binding enhanced the melting temperature of poly(A)·poly(U) and poly(I)·poly(C) and the binding affinity values evaluated from the melting data were in agreement with that obtained from other techniques. Circular dichroism results suggested minor conformational perturbations of the RNA structures. The binding was characterized by negative enthalpy and positive entropy changes and the affinity constants derived from calorimetry were in agreement with that obtained from spectroscopic data. Daunomycin bound all the three RNAs stronger than aristololactam-β-d-glucoside and the binding affinity varied as poly(A)·poly(U) > poly(I)·poly(C) > poly(C)·poly(G). The temperature dependence of the enthalpy changes yielded negative values of heat capacity changes for the complexation suggesting substantial hydrophobic contribution to the binding process. Furthermore, an enthalpy-entropy compensation behavior was also seen in all systems. These results provide new insights into binding of these small molecule drugs to double stranded RNA sequences.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Polyadenylic acid-Polyuridylic acid sodium salt, double-stranded homopolymer