- Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension.
Influence of the Architecture of Soft Polymer-Functionalized Polymer Nanoparticles on Their Dynamics in Suspension.
The behavior of nanogels in suspension can be dramatically affected by the grafting of a canopy of end-tethered polymer chains. The architecture of the interfacial layer, defined by the grafting density and length of the polymer chains, is a crucial parameter in defining the conformation and influencing the dynamics of the grafted chains. However, the influence of this architecture when the core substrate is itself soft and mobile is complex; the dynamics of the core influences the dynamics of the tethered chains, and, conversely, the dynamics of the tethered chains can influence the dynamics of the core. Here, poly(styrene) (PS) particles were functionalized with poly(methyl acrylate) (PMA) chains and swollen in a common solvent. NMR relaxation reveals that the confinement influences the mobility of the grafted chain more prominently for densely grafted short chains. The correlation time associated with the relaxation of the PMA increased by more than 20% when the grafting density increased for short chains, but for less than 10% for long chains. This phenomenon is likely due to the steric hindrance created by the close proximity to the rigid core and of the neighboring chains. More interestingly, a thick layer of a densely grafted PMA canopy efficiently increases the local mobility of the PS cores, with a reduction of the correlation time of more than 30%. These results suggest an interplay between the dynamics of the core and the dynamics of the canopy.