- Resting potential of rat cerebellar granule cells during early maturation in vitro.
Resting potential of rat cerebellar granule cells during early maturation in vitro.
The survival of rat cerebellar granule cells maintained in vitro is enhanced by a KCl-enriched medium. This effect is classically interpreted as resulting from a higher cytosolic calcium concentration. This implies the presence of voltage-dependent Ca2+ channels and a membrane potential that can respond to changes in external K+. Since previous studies cast a doubt on these two conditions, we reinvestigated the resting membrane potential and Ca2+ influxes in rat cerebellar granule neurones during the first week in vitro using a fluorescence imaging approach. Membrane potential was assessed with the fluorescent dye bis-oxonol, and intracellular free calcium with Fura-2. Resting potential was shown to progressively decrease from -40 mV at the first day in vitro to -60 mV at day 7. At all times in culture, as early as day 0, cells were depolarized when external KCl concentration was increased from 5 to 30 mM. This depolarization resulted in an increased cytosolic calcium concentration due to Ca2+ influx through L-type and N-type voltage-activated Ca2+ channels, functional at day 0. Gross estimations of the permeabilities of Na+ and Cl- were obtained at various times in culture by measuring the changes in resting potential brought about by a reduction of their external concentration. A progressive increase of the relative permeability to K+ ions seems to underlie the evolution of the resting potential with time.