- Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge.
Strategies to suppress hydrogen-consuming microorganisms affect macro and micro scale structure and microbiology of granular sludge.
Treatment of anaerobic granules with heat and two chemical treatments, contacting with 2-bromoethanesulfonate (BES) and with BES + Chloroform, were applied to suppress hydrogen-consuming microorganisms. Three mesophilic expanded granular sludge bed (EGSB) reactors-R(Heat), R(BES), and R(BES + Chlo)--were inoculated with the treated sludges and fed with synthetic sugar-based wastewater (5 g(COD) L(-1), HRT 20-12 h). Morphological integrity of granules and bacterial communities were assessed by quantitative image analysis and 16S rRNA gene based techniques, respectively. Hydrogen production in R(Heat) was under 300 mL H(2) L(-1) day(-1), with a transient peak of 1,000 mL H(2) L(-1) day(-1) after decreasing HRT. In R(BES + Chlo) hydrogen production rate did not exceed 300 mL H(2) L(-1) day(-1) and there was granule fragmentation, release of free filaments from aggregates, and decrease of granule density. In R(BES), there was an initial period with unstable hydrogen production, but a pulse of BES triggered its production rate to 700 ± 200 mL H(2) L(-1) day(-1). This strategy did not affect granules structure significantly. Bacteria branching within Clostridiaceae and Ruminococcaceae were present in this sludge. This work demonstrates that, methods applied to suppress H(2)-consuming microorganisms can cause changes in the macro- and microstructure of granular sludge, which can be incompatible with the operation of high-rate reactors.