Skip to Content
Merck
  • Transient Receptor Potential Ankyrin 1 Is Up-Regulated in Response to Lipopolysaccharide via P38/Mitogen-Activated Protein Kinase in Dental Pulp Cells and Promotes Mineralization.

Transient Receptor Potential Ankyrin 1 Is Up-Regulated in Response to Lipopolysaccharide via P38/Mitogen-Activated Protein Kinase in Dental Pulp Cells and Promotes Mineralization.

The American journal of pathology (2020-09-14)
Kento Tazawa, Nobuyuki Kawashima, Masashi Kuramoto, Sonoko Noda, Mayuko Fujii, Keisuke Nara, Kentaro Hashimoto, Takashi Okiji
ABSTRACT

Increased expression of the transient receptor potential ankyrin 1 (TRPA1) channel has been detected in carious tooth pulp, suggesting involvement of TRPA1 in defense or repair of this tissue after exogenous noxious stimuli. This study aimed to elucidate the induction mechanism in response to lipopolysaccharide (LPS) stimulation and the function of TRPA1 in dental pulp cells. Stimulation of human dental pulp cells with LPS up-regulated TRPA1 expression, as demonstrated by quantitative RT-PCR and Western blotting. LPS stimulation also promoted nitric oxide (NO) synthesis and p38/mitogen-activated protein kinase (MAPK) phosphorylation. NOR5, an NO donor, up-regulated TRPA1 expression, whereas 1400W, an inhibitor of inducible nitric oxide synthase, and SB202190, a p38/MAPK inhibitor, down-regulated LPS-induced TRPA1 expression. Moreover, JT010, a TRPA1 agonist, increased the intracellular calcium concentration and extracellular signal-regulated kinase 1/2 phosphorylation, and up-regulated alkaline phosphatase mRNA in human dental pulp cells. Icilin-a TRPA1 agonist-up-regulated secreted phosphoprotein 1 mRNA expression and promoted mineralized nodule formation in mouse dental papilla cells. In vivo expression of TRPA1 was detected in odontoblasts along the tertiary dentin of carious teeth. In conclusion, this study demonstrated that LPS stimulation induced TRPA1 via the NO-p38 MAPK signaling pathway and TRPA1 agonists promoted differentiation or mineralization of dental pulp cells.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
β-Glycerophosphate disodium salt hydrate, BioUltra, suitable for cell culture, suitable for plant cell culture, ≥99% (titration)
Sigma-Aldrich
Bay 11-7085, ≥98% (HPLC), solid
Sigma-Aldrich
JT010, ≥98% (HPLC)
Sigma-Aldrich
1400W, A selective, cell-permeable, irreversible, slow, tight-binding inhibitor of inducible nitric oxide synthase (iNOS; Kd = 7 nM).