Skip to Content
Merck
  • An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

PloS one (2014-10-23)
Yu-Hua Chao, Han-Ping Wu, Kang-Hsi Wu, Yi-Giien Tsai, Ching-Tien Peng, Kuan-Chia Lin, Wan-Ru Chao, Maw-Sheng Lee, Yun-Ching Fu
ABSTRACT

Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs) have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP) model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs) and umbilical cord-derived MSCs (UCMSCs) showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg) cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
5-Carboxy-fluorescein diacetate N-succinimidyl ester, for fluorescence, ≥95.0% (HPLC)
Sigma-Aldrich
5(6)-Carboxyfluorescein diacetate N-succinimidyl ester, BioReagent, suitable for fluorescence, ≥90% (HPLC)
Sigma-Aldrich
Indomethacin, meets USP testing specifications
Sigma-Aldrich
Indomethacin, 98.5-100.5% (in accordance with EP)
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99%, BioUltra
Sigma-Aldrich
3-Isobutyl-1-methylxanthine, ≥99% (HPLC), powder
Indomethacin, European Pharmacopoeia (EP) Reference Standard
Supelco
Indomethacin, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Indomethacin, United States Pharmacopeia (USP) Reference Standard
Dexamethasone for peak identification, European Pharmacopoeia (EP) Reference Standard
USP
Dexamethasone, United States Pharmacopeia (USP) Reference Standard
Dexamethasone, British Pharmacopoeia (BP) Assay Standard
Supelco
Dexamethasone, Pharmaceutical Secondary Standard; Certified Reference Material
Dexamethasone for system suitability, European Pharmacopoeia (EP) Reference Standard
Supelco
Dexamethasone, VETRANAL®, analytical standard
Sigma-Aldrich
Dexamethasone, tested according to Ph. Eur.
Sigma-Aldrich
Dexamethasone, powder, γ-irradiated, BioXtra, suitable for cell culture, ≥80% (HPLC)
Sigma-Aldrich
Dexamethasone, ≥98% (HPLC), powder
Sigma-Aldrich
Dexamethasone, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
Dexamethasone, meets USP testing specifications
Dexamethasone, European Pharmacopoeia (EP) Reference Standard