Skip to Content
Merck
  • Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.

Degradation of selected agrochemicals by the white rot fungus Trametes versicolor.

The Science of the total environment (2014-09-15)
Josep Anton Mir-Tutusaus, Mario Masís-Mora, Cayo Corcellas, Ethel Eljarrat, Damià Barceló, Montserrat Sarrà, Glòria Caminal, Teresa Vicent, Carlos E Rodríguez-Rodríguez
ABSTRACT

Use of agrochemicals is a worldwide practice that exerts an important effect on the environment; therefore the search of approaches for the elimination of such pollutants should be encouraged. The degradation of the insecticides imiprothrin (IP) and cypermethrin (CP), the insecticide/nematicide carbofuran (CBF) and the antibiotic of agricultural use oxytetracycline (OTC) were assayed with the white rot fungus Trametes versicolor. Experiments with fungal pellets demonstrated extensive degradation of the four tested agrochemicals, at rates that followed the pattern IP>OTC>CP>CBF. In vitro assays with laccase-mediator systems showed that this extracellular enzyme participates in the transformation of IP but not in the cases of CBF and OTC. On the other hand, in vivo studies with inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the degradation of IP, OTC and CBF, but not for CP. The compounds 3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (DCCA) and 3-phenoxybenzoic acid (PBA) were detected as transformation products of CP, as a result of the breakdown of the molecule. Meanwhile, 3-hydroxycarbofuran was detected as a transformation product of CBF; this metabolite tended to accumulate during the process, nonetheless, the toxicity of the system was effectively reduced. Simultaneous degradation of CBF and OTC showed a reduction in toxicity; similarly, when successive additions of OTC were done during the slower degradation of CBF, the fungal pellets were able to degrade both compounds. The simultaneous degradation of the four compounds successfully took place with minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus supporting the potential use of T. versicolor for the treatment of diverse agrochemicals.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Supelco
Methanol, analytical standard
Supelco
Chloroform, analytical standard
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Chloroform, anhydrous, ≥99%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Water, PCR Reagent
Supelco
Water, suitable for ion chromatography
Sigma-Aldrich
Methanol, NMR reference standard
Supelco
Water, for TOC analysis
Supelco
Water, ACS reagent, for ultratrace analysis
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, BioPerformance Certified
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Pure Water Density Standard, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Chloroform, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%