Skip to Content
Merck
  • A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O.

A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O.

Journal of environmental sciences (China) (2013-08-09)
Boxiong Shen, Xiaopeng Zhang, Hongqing Ma, Yan Yao, Ting Liu
ABSTRACT

Ce-ZrO2 is a widely used three-way catalyst support. Because of the large surface area and excellent redox quality, Ce-ZrO2 may have potential application in selective catalytic reduction (SCR) systems. In the present work, Ce-ZrO2 was introduced into a low-temperature SCR system and CeO2 and ZrO2 supports were also introduced to make a contrastive study. Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2 were prepared by impregnating these supports with Mn(NO3)2 solution, and have been characterized by N2-BET, XRD, TPR, TPD, XPS, FT-IR and TG. The activity and resistance to SO2 and H2O of the catalysts were investigated. Mn/Ce-ZrO2 and Mn/CeO2 were proved to have better low-temperature activities than Mn/ZrO2, and yielded 98.6% and 96.8% NO conversion at 180 degrees C, respectively. This is mainly because Mn/Ce-ZrO2 and Mn/CeO2 had higher dispersion of manganese oxides, better redox properties and more weakly adsorbed oxygen species than Mn/ZrO2. In addition, Mn/Ce-ZrO2 showed a good resistance to SO2 and H2O and presented 87.1% NO conversion, even under SO2 and H2O treatment for 6 hours, and the activity of Mn/Ce-ZrO2 was almost restored to its original level after cutting off the injection of SO2 and H2O. This was due to the weak water absorption and weak sulfation process on the surface of the catalyst.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Zirconium, foil, thickness 0.1 mm, 99.98% trace metals basis
Sigma-Aldrich
Manganese, powder, −325 mesh, ≥99% trace metals basis
Sigma-Aldrich
Manganese, chips, thickness <2.0 mm, 99%
Sigma-Aldrich
Water, for cell biology, sterile ultrafiltered
Sigma-Aldrich
Water, tested according to Ph. Eur.
Sigma-Aldrich
Water, for molecular biology, sterile filtered
Sigma-Aldrich
Ammonia, puriss., anhydrous, ≥99.95%
Sigma-Aldrich
Zirconium, powder, −100 mesh
Sigma-Aldrich
Manganese, powder, ≥99.9% trace metals basis
Sigma-Aldrich
Zirconium, sponge, ≥99% trace metals basis
Sigma-Aldrich
Ammonia, anhydrous, ≥99.98%
Sigma-Aldrich
Sulfur dioxide, ≥99.9%
Sigma-Aldrich
Water, PCR Reagent
Sigma-Aldrich
Water, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
E-Toxate Water, endotoxin, free
Sigma-Aldrich
Water, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ammonia solution, 0.4 M in THF
Sigma-Aldrich
Zirconium, rod, diam. 6.35 mm, ≥99% trace metals basis
Supelco
Water, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
Water, deuterium-depleted, ≤1 ppm (Deuterium oxide)
Supelco
Water, for TOC analysis
Supelco
Water, suitable for ion chromatography
Supelco
Density Standard 998 kg/m3, H&D Fitzgerald Ltd. Quality
Sigma-Aldrich
Water, BioPerformance Certified
Supelco
Water, ACS reagent, for ultratrace analysis
Sigma-Aldrich
Ammonia solution, 4 M in methanol
Sigma-Aldrich
Ammonia solution, 2.0 M in ethanol
Sigma-Aldrich
Ammonia solution, 2.0 M in isopropanol
Sigma-Aldrich
Ammonia solution, 0.4 M in dioxane
Sigma-Aldrich
Water, Deionized