- Pharmaceutical formulation affects titanocene transferrin interactions.
Pharmaceutical formulation affects titanocene transferrin interactions.
Since the discovery of the anticancer activity of titanocene dichloride (TDC), many derivatives have been developed and evaluated. MKT4, a soluble, water-stable formulation of TDC, was used for both Phase I and Phase II human clinical trials. This formulation is investigated here by using (1)H and (13)C NMR, FT-ICR mass spectrometry, and UV/vis-detected pH-dependent speciation. DFT calculations are also utilized to assess the likelihood of proposed species. Human serum transferrin has been identified as a potential vehicle for the Ti anticancer drugs; these studies examine whether and how formulation of TDC as MKT4 may influence its interactions, both thermodynamic and kinetic, with human serum transferrin by using UV/vis absorption and fluorescence quenching. MKT4 binds differently than TDC to transferrin, showing different kinetics of binding as well as a different molar absorptivity of binding (7500 M(-1) cm(-1) per site). Malate, used in the buffer for MKT4 administration, acts as a synergistic anion for Ti binding, shifting the tyrosine to Ti charge transfer energy and decreasing the molar absorptivity to 5000 M(-1) cm(-1) per site. These differences may have had consequences after the change from TDC to MKT4 in human clinical trials.