Skip to Content
Merck
  • Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans.

Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans.

Biotechnology letters (2012-11-20)
Shuo Zhou, Shun-Cheng Zhang, Dun-Yue Lai, Shuang-Ling Zhang, Zhen-Ming Chen
ABSTRACT

The gene encoding a novel short-chain alcohol dehydrogenase in the thermophilic bacterium, Carboxydothermus hydrogenoformans, was identified and overexpressed in Escherichia coli. The enzyme was thermally stable and displayed the highest activity at 70 °C and pH 6.0. It preferred NAD(H) over NADP(H) as a cofactor and exhibited broad substrate specificity towards aliphatic ketones, cycloalkanones, aromatic ketones, and ketoesters. Furthermore, ethyl benzoylformate was asymmetrically reduced by the purified enzyme, using an additional coupled NADH regeneration system, with 95 % conversion and in an enantiomeric excess of (99.9 %). The results of this study may lead to the discovery of a novel method for asymmetric reduction of alcohols, which is an important tool in organic synthesis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Alcohol Dehydrogenase equine, recombinant, expressed in E. coli, ≥0.5 U/mg
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae, ≥300 units/mg protein, lyophilized powder (contains buffer salts), Mw 141-151 kDa
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae
Sigma-Aldrich
Alcohol Dehydrogenase from Saccharomyces cerevisiae, powder, ≥300 units/mg protein, mol wt ~141,000 (four subunits)