Skip to Content
Merck
  • Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation.

Calcium and hydroxyapatite binding site of human vitronectin provides insights to abnormal deposit formation.

Proceedings of the National Academy of Sciences of the United States of America (2020-07-24)
Kyungsoo Shin, James E Kent, Chandan Singh, Lynn M Fujimoto, Jinghua Yu, Ye Tian, Wonpil Im, Francesca M Marassi
ABSTRACT

The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.

MATERIALS
Product Number
Brand
Product Description

Supelco
Silica gel, high-purity grade, pore size 60 Å, 200-400 mesh particle size
Sigma-Aldrich
Hydroxyapatite, powder, 2.5 μm
Sigma-Aldrich
Hydroxyapatite, aqueous paste, <50 nm, 30 wt. %