Skip to Content
Merck
  • Allatoregulatory peptides in Lepidoptera, structures, distribution and functions.

Allatoregulatory peptides in Lepidoptera, structures, distribution and functions.

Journal of insect physiology (2008-04-02)
N Audsley, H J Matthews, N R Price, R J Weaver
ABSTRACT

Allatoregulatory peptides either inhibit (allatostatins) or stimulate (allatotropins) juvenile hormone (JH) synthesis by the corpora allata (CA) of insects. However, these peptides are pleitropic, the regulation of JH biosynthesis is not their only function. There are currently three allatostatin families (A-, B-, and C-type allatostatins) that inhibit JH biosynthesis, and two structurally unrelated allatotropins. The C-type allatostatin, characterised by its blocked N-terminus and a disulphide bridge between its two cysteine residues, was originally isolated from Manduca sexta. This peptide exists only in a single from in Lepidoptera and is the only peptide that has been shown to inhibit JH synthesis by the CA in vitro in this group of insects. The C-type allatostatin also inhibits spontaneous contractions of the foregut. The A-type allatostatins, which exist in multiple forms in a single insect, have also been characterised from Lepidoptera. This family of peptides does not appear to have any regulatory effect on JH biosynthesis, but does inhibit foregut muscle contractions. Two structurally unrelated allatotropins stimulate JH biosynthesis in Lepidoptera. The first was identified in M. sexta (Manse-AT) and occurs in other moths. The second (Spofr AT2) has only been identified in Spodoptera frugiperda. Manduca sexta allatotropin also stimulates heart muscle contractions and gut peristalsis, and inhibits ion transport across the midgut of larval M. sexta. The C-terminal (amide) pentapeptide of Manse-AT is important for JH biosynthesis activity. The most active conformation of Manse-AS requires the disulphide bridge, although the aromatic residues also have a significant effect on biological activity. Both A- and C-type allatostatins and Manse-AT are localised in neurosecretory cells of the brain and are present in the corpora cardiaca, CA and ventral nerve cord, although variations in localisation exist in different moths and at different stages of development. The presence of Manse-AS and Manse-AT in the CA correlates with the biological activity of these peptides on JH biosynthesis. There is currently no explanation for the presence of A-type allatostatins in the CA. The three peptide types are also co-localised in neurosecretory cells of the frontal ganglion, and are present in the recurrent nerve that supplies the muscles of the gut, particularly the crop and stomodeal valve, in agreement with their role in the regulation of gut peristalsis. There is also evidence that they are expressed in the midgut and reproductive tissues.