Direkt zum Inhalt
Merck
  • C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells.

C-terminal parathyroid hormone-related protein inhibits proliferation and differentiation of human osteoblast-like cells.

Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research (1997-05-01)
M E Martínez, A García-Ocaña, M Sánchez, S Medina, T del Campo, A Valin, M J Sanchez-Cabezudo, P Esbrit
ZUSAMMENFASSUNG

Parathyroid hormone-related protein (PTHrP) is synthesized by osteoblasts, although its local role in bone is not completely understood. The C-terminal (107-111) region of PTHrP seems to be a potent inhibitor of osteoblastic bone resorption. We studied the effect of this PTHrP domain on the proliferation and synthesis of osteoblastic markers in osteoblast-like cells from adult human bone. We found that the human (h)PTHrP(107-139) fragment, between 10 fM and 10 nM, inhibited 3H-thymidine incorporation into these cells. The antiproliferative effect of the latter fragment, or that of hPTHrP(107-111), was similar to that induced by [Tyr34] hPTHrP(1-34) amide, bovine PTH(1-34), and hPTHrP(1-141), while hPTHrP(38-64) amide was ineffective. Human PTHrP(7-34) amide, at 10 nM, and 1 microM phorbol-12-myristate-13-acetate also significantly decreased DNA synthesis in human osteoblast-like cells. Neither hPTHrP(7-34) amide nor hPTHrP(107-139), at 10 nM, stimulated protein kinase A (PKA) activity in these cells. Moreover, 100 nM H-89, a PKA inhibitor, did not eliminate the inhibitory effect of hPTHrP(107-139) on these cells' growth. However 100 nM calphostin C, a PKC inhibitor, blunted this effect of PTHrP(107-139). In addition to their antimitogenic effect, hPTHrP(107-139) and hPTHrP(107-111) inhibited basal and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)-stimulated alkaline phosphatase activity in these cells. Both fragments, like 1,25(OH)2D3, decreased C-terminal type I procollagen secretion into the cell-conditioned medium, but osteocalcin secretion by these cells was unaffected by the C-terminal PTHrP fragments. These findings suggest that PTHrP may act as a local regulator of bone formation.